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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

TRANSONIC WIND-TUNNEL INVESTIGATION OF THE AERODYNAMIC
CHARACTERISTICS OF A 60° TRIANGULAR WING IN COMBINATION
WITH A SYSTEMATIC SERIES OF THREE BODIES

By Thomas C. Kelly
SUMMARY

Aerodynamic characteristics and the effect of body shape on wing-
fuselage interference are presented for a 60° triangular wing at Mach
numbers from 0.60 to 1.125 and angles of attack from 0° to 7°. Basic
aerodynamic characteristics are also presented for the wing with inter-
ference of one configuration through the same Mach number range and at
angles of attack to 24°. The results indicate that the addition of a
cylindrical afterbody to a nQrmal curved fuselage markedly reduced the

r transonic zero-lift drag rise and increased the maximum 1ift-drag ratio
in the supersonic range for the wing with interference. Additions of

the cylindrical afterbody and the cylindrical afterbody in combination
with an extended forebody generally resulted in an increase in the drag
due to lift for the wing with interference. Lift and pitching moment
were relatively unaffected by modifications to the normal curved fuselage.

INTRODUCTION

Previous papers have presented the aerodynamic characteristics of
triangular wings at subsonic and supersonic speeds, but only a limited
amount of data is available for these wings in the transonic range at
lifting conditions. As part of a general wing-fuselage-interference
program being conducted in the langley 8-foot transonic tunnel, the
basic aerodynamic characteristics at angles of attack to 24° and the
effects of several basic changes in body shape on wing-fuselage inter-
ference at angles of attack from O° to 7° have been obtained at Mach
numbers from 0.60 to 1.125 for a thin triangular wing which had 60°
sweepback of the leading edge, an aspect ratio of 2.31, and an NACA
65A002 airfoil section parallel to the plane of symmetry. Results
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of investigations of representative swept and umnswept wings in combina- v

tion with these same bodies are presented in references 1 and 2.

SYMBOLS
M average stream Mach number
q free-stream dynemic pressure, l'b/sq ft
c wing mean serodynamic- chord, in.
S wing area, sq ft
CL 11ft coeffictent, Lift
qS
Cp drag coefficient, DL:E
q
Cn pitching-moment coefficient, Pitching mom:xsl‘; about 0.258
acr, )
— lift-curve slope per degree, averaged over a lift-coefficient
da /.y range of 0 to 0.k
écll static-longitudinal-stability parameter, averaged over a
oCy, - 1ift-coefficient range of O to O.4

(L/D) pax meximum lift-drag ratio

P, =P
P. base pressure coefficient, ———
b Q
AP, incremental base pressure coeff icient due to addition of

wing to fuselage
P free-stream static pressure, lb/ sq Tt
P, static pressure at model base, 1b/sq ft
-
o angle of attack of fuselage axis, deg
ey CONFIDENTIAL

5

CUAITY INFORTA [ION




)

NACA RM L52L22a CONF IDENTTAL 3

APPARATUS AND METHODS

Tunnel

The Langley 8-foot transonic tunnel is a single-return, slotted-
throat wind tunnel capable of continuous operation through the speed
range up to a Mach number of about 1.13. A complete description of the
Langley 8-foot transonic tunnel may be found in reference 3.

Models

Wing.- Three configurations, differing only in fuselage shape, were
used for the present investigation. The wing used in all three combina-
tions (see fig. 1) had 60° sweepback of the leading edge, an aspect
ratio of 2.31, a taper ratio of O, and an NACA 65A002 airfoil section
parallel to the plane of symmetry. The wing area, including the part of
the wing enclosed in the fuselage, was 1 square foot. Wing construction
was of stainless steel.

Fuselages.- The basic combination, designeted as configuration A,
had a fuselage designed by cutting off the rear portion of a body of
revolution with a basic fineness ratio of 12 to form & body with a fine-
ness ratio of 9.8. The fuselage of configuration B was obtained by the
addition of a plastic cylindrical section to configuration A which
extended from the fuselage maximum diameter to the model base. The
fuselage of configuration C was formed by the addition of a second cylin-
drical plastic section to configuration B which extended the original
forebody upstream a distance equal to twice the fuselage maximum diameter.
Ordinates for the three fuselages are presented in reference 1. It
should be noted that fuselage configurations A, B, and C of the present
investigation correspond to bodies A, C, and D, respectively, of refer-
ence 1. Body configuration B of reference 1 was not included in the
present investigation due to a lack of available tunnel testing time.

Sting configurations.- Models were mounted on an internal strain-
gage balance. The rear portion of the balance comprised a sting for
supporting the model in the tunnel. For the original afterbody (configu-
ration A) the sting was tapered from the base of the model rearward
(see fig. 1). The sting rearward from the base of the cylindrical after-
body configuration had a cylindrical cross section with a constant diam-
eter slightly less than that of the body (fig. 1). A photograph of
configuration B mounted in the slotted test section of the Langley 8-foot
transonic tunnel is presented as figure 2.
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Measurements and Accuracy ‘ #

Lift, drag, and pitching moment were measured by means of the
internal strain-gage balance. Coefficients are based on the total wing
area of 1 square foot. Pitching-moment coefficients, based on a mean
aerodynamic chord of 10.529 inches, are referred to the quarter point
of the mean aerodynamic chord.

Measured coefficients fer the various configurations are estlmated
to be accurate within the following limits:

Configurations A and B:

- Low speeds High speeds
CL » v v v v v v e e e e e e e e e e e +0.008 +0.004
Cp « v v ¢« v« v v v v v o e e e .. 30,001 +0.0005
Cp o« ¢+ o v o o o o v o o o o v o .. . 0.003 +0.002
Configuretion C
Low speeds High speeds
CL . . . . . . . . . . . ] . - . . . . . io . 016 io . 008
_ CD e+ 2 s e & s e 4 e s e e e u o s+« *0.005 +0.002 -
Cp + - - . . e+« . . . 20.002 +0.002

The difference in estimated accuracy for configuration C was caused
by the use of a stronger balance with this configuration to allow testing
at the higher angles. It should be noted that the limits presented
represent maximum estimated errors for the measured coefficients and
when based upon scatter and repeatability of data would be considerably
lower.

The angle of attack of the model was measured with an optical sys-
tem sighted on a reference line on the fuselage and is estimated to be
accurate within +0.1°. Angles of attack at which data were recorded are
shown in figure 3.

Local deviations from the average free-stream Mach number did not
exceed 0.003 at subsonic Mach numbers and did not become greater than
0.010 with increases in Mach number to 1.125.

Static pressure at the rear end of the models was obtained from
pressure orifices located in the top and bottom of the sting support in
the plane of the model base.

Average Reynolds number for the present investigation, based on
the mean aserodynamic chord, varied from approximately 2.9 X 10~ to
3.5 x 106. '

CONFIDENTIAL



L]

NACA RM L52L22a CONFIDENTIAL 5

The effects of boundary-reflected disturbances in the slotted test
section of the Langley 8-foot tramsonic tunnel on the results presented
were small (refs. 3 and 4) and the drag data presented at constant lift
coefficient have been faired in an attempt to eliminate these effects.
The faired data presented never differed from the actual data by more
than 0.001 in drag coefficient.

RESULTS AND DISCUSSION

The various body shapes used in the present investigetion were
developed to reduce the effects of interference between the wing and
body. The forevody was extended in an attempt to reduce the induced
velocities produced by the body in the region of the forward portion
of the wing. .The cylindrical afterbody was added in an attempt to
reduce the induced velocities produced by the original afterbody in
the region of the rear part of the wing. These changes made in body
shape were of a basic research nature and were not meant to suggest
practical configurations.

All data presented, unless otherwise noted, are for the wing with
interference and were obtained by subtracting the body-alone data of
reference 1 from the corresponding combination data of the present
investigation. The results have been adjusted to a condition at which
the static pressure at the model base and the free-stream static pres-
sure are equal. Base pressure coefficients for the wing-fuselage com-
binations and incremental base pressure coefficients due to the addition
of the wing to the fuselage of the combinations are presented in fig-
ure 3. Basic date are presented as angle of attack, drag coefficient,
and pitching-moment coefficient as a function of 1lift coefficient in
figure 4. From these basic data the analysis figures have been prepared.

Lift Characteristics

The variation with 1lift coefficient of angle of attack for the
three configurations is presented in figure 4(a). There are indications
of a break which occurs in the 1lift curve for configuration C at Mach
numbers from 0.80 to 0.90 and an angle of attack of approximately 13°.
Similar breaks may be noted in the data of references 5 and 6. Varia-
tion with Mach number of average 1lift-curve slopes for the three con-
figurations is presented in figure 5. The addition of a cylindrical
afterbody (configuration B) to the basic fuselage (configuration A)

ac
resulted in a decrease in the values of (57L> throughout the Mach
a
av

number range with a decrease of 10 percent noted at Mach numbers near 1.0.
Addition of an extended forebody (configuraticn C) produced no further
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change. The addition of the cylindrical sfterbody undoubtedly caused
a reduction in the induced velocities ovexr the aft portion of the wing.
The resulting increased adverse pressure gradient over the forward part
of the wing may have caused an increase im boundary-layer thickness
over the upper surface of the wing at lifting conditions.

Drag Characteristics

Drag at constant lift coefficients.- The variation of drag coeffi-
cient with 1ift coefficient for several Mach numbers is presented in
figure 4{b). Variation of drag coefficient with Mach number at constant
1ift is presented in figure 6. At zexo lift coefficient, the wing with
interference of configuration A experdenced a drag rise of 0.004 starting
at a Mach number of 0.95. Addition of & cylindrical afterbody to the
basic fuselage resulted in a marked reduction of the drag rise due to the
reduction of adverse wing-fuselage interference. A similar reduction
in the zero-lift drag rise resulted from tlie addition of a cylindrical
afterbody to the swept wing-body combinat ion of reference 7. This
reduction of the drag rise may be explained by application of the
transonic-drag-rise concept (ref. 7) which indicates that the drag rise
at transonic Mach numbers is a function of the axial cross-sectional
area development of a particular configurstion. Area developments for
the three configurations are shown in figure T and it is apparent that
the area development (in this case, reductions in cross-sectional area)
over the rear portions of configuration B is much less severe than that
over the same portion of configuratiom A. Addition of an extended fore-
body produced no further measurable change in the drag at zero 1ift
throughout the Mach number range investigsted.

At a 1lift coefficient of 0.2, the addition of a cylindrical after-
body (configuration B) to the basic fuselage resulted in an increase in
drag at Mach numbers to about 0.975 for the wing with interference and a
slight decrease in drag at the higher Mach numbers. These variations
in drag were probably due to the same factors which affected the varia-
tions in lift-curve slope noted previously. Addition of an extended
forebody (configuration C) increased the drag still further throughout
the speed range. An increase in forebody length leads to an increase
in the local upflow, increased adverse pressure gradients, and increased
boundary-layer thickness near the leading edge of the wing root sections.
Each of these effects would tend to influence leading-edge separation
and over-all drag.

At a 1ift coefficient of 0.35, increases in stream Mach number were
accompanied by a decrease in leading-edge separation with a resultant
decrease in drag, as might be expected frxrom previous results for swept

wings (see ref. 8).
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Maximum lift-drag ratios.- The effect of fuselage shape on maximum
1ift-drag ratio and 1ift coefficient for (L/D)p,, is shown in figure 8.

The addition of a cylindrical afterbody (configuration B) to the original
curved fuselage resulted in an improvement of (L/D) ., &t supersonic

Mach numbers. Because the maximum lift-drag ratios were obtained at
1ift coefficients near 0.1, the values of (L/D)max are controlled to

a considerable extent by the effects of body shape on drag near zero
1lift. It has been shown in figure 6 that the addition of a cylindrical
afterbody reduced the drag at supersonic Mach numbers and 1ift coeffi-

- cients 'of O and 0.2. The addition of an extended forebody (configura-

" tion C) resulted in a marked decrease in (L/D)max throughout the range.

Figure 9 has been obtained by the addition of an increment of drag
coefficient of 0.01 to the wing with interference drag representing the
additional drag due to a fuselage, tail, canopy, and so forth. For this
case, the maximum 1ift-drag ratios were obtained at the higher 1lift
coefficients (CL ~ 0.2) and the general levels of (L/D)max are

reduced throughout the range to values closer to those that might be
expected for a real airplane configuration. At subsonic Mach numbers,
the values of (L/D)max are considerably lower than the values obtained

for swept and unswept wings but, at transonic Mach numbers, are about
the same as those obtained for such wings (refs. 1 and 2).

Pitching-moment characteristics.- The variaticn of pitching-moment
coefficient with 1lift coefficient, shown in figure 4(c), is fairly
linear except at the higher 1lift coefficients for configuration C at
Mach numbers from 0.80 to 0.90 where a rearward shift in center-of-
pressure location may be noted. At Mach numbers of 0.60 and 0.90, there
are slight indications of a bresk which is associated with the 1lift-
curve break shown in figure 4(a). Variation with Mach number of the
average static-longitudinal-stability parameter BCm/bCL (fig. 10) was

only slightly affected by modifications made to the basic fuselage
configuration. :

CONCLUSIONS

The investigation of a 60° triangular wing in combination with a
systematic series of three body shapes has led to the following conclu-
sions relative to wing-body interference:

1. The drag rise at zero lift of the wing with interference when

tested in combination with the original curved fuselage was markedly
reduced by use of a cylindrical afterbody in combination with the wing.
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2. Additions of the cylindrical afterbody and the cylindrical after-
body in combination with an extended forebody generally resulted in an
increase in the drag due to 1ift for the wing with interference.

3. The use of a cylindrical afterbody in combination with the wing
resulted in an increase in the maximum 1ift-drag ratio at supersonic
Mach numbers for the wing with wing-fuselage interference.

—

4. Interference effects of the various body modifications on 1lift
and pitching moment of the wing were small at all angles tested.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va.
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Figure 2.- Configuration B mounted in the slotted test section of
Langley 8-foot transonic tunnel.
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Lift coefficient,C_

Figure k.- Variation with lift coefficient of force and moment characteristics
.\ for ving with ving-fuselage interference.
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Configuration
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Figure 8.~ Variation with Mach number of maximum lift-dreg ratio and
1ift coefficient for maximum lift-drag ratio for wing with interference
of the various configurations.
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